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SUMMARY I .  

The in-plane shear strength and the t ransverse strength in 

-.shear and in tension of composites comprised of elastic -brittle 

f ibers  and an elastic perfectly plastic binder a r e  evaluated quan- 

titatively in te rms  of the matrix yield strength and volume fraction. 

The resul ts  a r e  in the form of bounds obtained by the application of 

the theorems of l imit  analysis of plasticity. 

1. INTRODUCTION 

An important goal in the study of the mechanics of composite 

media is the determination of a theoretical relationship between the 

strength of a uniaxial fibrous composite and the mechanical properties 

- 
and geom-etry of i ts  constituents. A relationship of this type could be 

utilized both in the definition of desirable improvements in constituent 

. properties a s  well a s  in the assessm'ent of the s t ructural  potential of 

various composite materials. 



The tensile and compressive strength of fibrous composites 

loaded parallel  to  the f ibers  has  been studied by Rosen [l] * . Trans-  

- v e r s e  strength w a s  studied by Hashin [ 2 ] using theorems of l imit  

. analysis of plasticity [ 3, 43 . Upper and lower bounds for limit loads 

w e r e  obtained under certain geometrical res t r ic t ions - namely, for 

those cases  in which i t  is possible to put a plane through the fiber- 

reinforced body under consideration without cutting through any fibers. 

This prerequisite geometrical restriction is severe and it is the 

purpose of the present paper to obtain bounds of the l imit  loads without --.. 
I 

imposing this constraint. 

I 
i * Numbers in square brackets refer to Bibliography at  the end of this 

paper. 
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-2. STATEMENT O F  THE PROBLEM * .  

The present analysis considers a composite body with uni- 

directional circular reinforcing fibers of various diameters embedded 

in  the matrix material. It is assumed that the fibers a r e  elastic- 

brit t le and that the matrix is elastic-perfectly plastic and obeys the 

von Mises '  yield criterion. The body is subject to various simple 

surface tractions and it is desired to find the l imit  load for each se t  

of surface tractions. This is defined as that load a t  which the defor- 

mation of the body can increase without any increase in load. In the 

present  work, this load is defined as  the failure load of the composite 

body and i t  is  estimated by bounding i t  f rom above and below by the 

- application of the methods of limit analysis of plasticity. 

For convenience of analysis, the fiber -reinforced composite 

- . body under investigation i s  chosen to. be a cylindrical specim-en with 



-4- 

rectangular cross-section. The specimen is re fer red  to a n  ortho- 

gonal Cartesian coordinate system whose x -axis is parallel to the 1 

reinforcing fibers which extend from base to base of the specimen a s  

shown in Figure 1. Following Hashin and Rosen [ 5 3,  the entire com- 

posite specimen is considered as an assemblage of composite 

cylinders. A l l  f ibers a r e  surrounded entirely by concentric cylinders 

of matrix material  in such a way that they a r e  not overlapping. The 

cylinder consisting of a fiber of radius rf and the outer matrix-shell 

of radius r is called a composite cylinder. It is assumed that the b 

lateral surface of the Specimen does not cut through any of the com- 

posite cylinders. The entire composite body is thus considered a s  an 

aggregate of the composite cylinders plus the remaining matrix-volume. 

Thus, if  V, V and V denote, respecti-vely, the total volumes of the 1 2 

specimen, the composite cylinders and the remaining matrix in the 

specimen, the following obvious relation holds 



1 

The von Mises '  yield criterion which the matrix material  is 

-5 - 

v = v1 + v2 (1) 

varies from one composite cylinder to 
'f 
rb In general, B E 

another in a specimen and V2 # 0. An idealized type of assemblage 

where  p i s  the same for all composite cylinders (although the fibers 

a r e  of different diameters) and V2 = 0 is called a "random array" [5]. 

3. LIMIT ANALYSIS O F  THE COMPOSITE SPECIMEN 

assumed to obey has the following form:: : 

where Sij a r e  components of the s t ress  deviator and k is  the yield 

s t r e s s  in simple shear for the matrix. Under the conditions of plane 

::Henceforth, unless otherwise specified, i, j = 1, 2, 3;  summation 
on repeated indices is implied. 



. -  

s t ra in  perpendicular to xl-axis, von Mises '  yield cri terion (2) reduces to 

where T Z 2 ,  ?33, a n d 7  a r e  components of the s t r e s s  tensor in the 23 

t r ansve r se  plane. 

F o r  practical composite materials, the fiber modulus is much 

higher than that of the matrix. Therefore, the fibers may be considered 

to be rigid. 

% 

The upper and lower bound theorems of limit analysis of plasticity 

will be used to obtain upper and lower bounds of the limit load. Readers  

i 
are r e fe r r ed  to [3, 43 for p r o d s  of the theorems. 

The surface tractions applied to the entire boundary surface S of 

the specimen can be described generally by the following relations: - - 

Ti(S) = 7.. n 
1J j 

I where Ti(S) a r e  components 

(4) 
.. 

of the surface tractions; 7.. a r e  components 
1J 

of the s t r e s s  tensor and n. a r e  components of the unit outward normal J 

to s. 
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The following cases of surface loadings a r e  considered: 

Case 1. The surface tractions in (4) a r e  such that 7.. has the following 
1J 

form: 
Tij=[;12 7 i' ! ]  

(5) 

where 7 is a constant. This amounts to a uniform shear s t r e s s  712 12 

applied on the boundary of the specimen as  depicted diagramatically 

in Figure 2 in the x x plane. 
1 2  

s 

According to the lower bound theorem, a lower bound of the 

l imit  load for the surface tractions T. ( S )  is that load for which a 
1 

statically admissible s t r e s s  field exists in the body under consideration. 

In this case, a uniform s t r e s s  field 

-is chosen a s  a statically admissible s t r e s s  field where To is such that 

(2) is nowhere violated in the matrix. Then i t  can easily be shown that 

the lower bound of the limit load of T12 is given by: 
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(5;) L = k 

F o r  upper bound construction, a kinematically admissible 

velocity field is chosen as follows: 

(a) In the region of the composite specimen not occupied by 

the composite cylinders, 

U l  = 0, u2 = ylxl, u3 = 0 (7) 

where y is any r e a l  number. 
1 

(b) In any composite cylinder, the velocity field y is the elastic 

displacement solution to the displacement boundary value problem 

with boundary conditions (7) prescribed. This resul t  is obtained 
I 

f rom Appendix 2 of [5] with the modification that the fibrous core 

is rigid. 

L 
For  this velocity field, an upper bound of the limit load T can be 12 

obtained from the following expression: 
I 



.. 
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where F(k..), to be integrated over the entire volume of the 
1J 

specimen, is  the dissipation density function calculated from 

this kinematically admissible velocity field. Fo r  the general  case 

where composite cylinders have different B’s, this yields: 

1 C N C [ 1 5;- I,”” ir<) t 2 2 $2 cos 8 d@dR] (8) 

R R2 2 t -  = I -  - v1 
V i=l 

8(1-Bi ) 1 
k V 

th where di) is the total volume of the i composite cylinder; 
C 

r 
f 6 is the ratio - 

rb 

th 
for  the i composite cylinder and N is the total 

1 

number of composite cylinders in the specimen. 

In particular, €or the case where all coiilposite cylinders have 

the same B, (8) reduces to simple form 

where 
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- 

and I =  1 2 j f' R 4-0 d e d R  (10) 
n(1- B ) P o  R R 

Further ,  in the case of the "random array" (V2= 0) , the fiber-volume 

2 
fraction of the composite specimen, vf = b and (9) becomes 

The --itegral I ,  in C 
A 

is integrated numerically for  different P's.  

The resu l t  is shown in Figure 3 where (Tl:)uin (11) is plotted as a function 

2 of v (0 < v r <  1, v = B ). 
f f 

k 

Notice particularly in  Figure 3, 

and 
i 

7T v '1 - 
f k 

F r o m  the above result, it is concluded that under the type of surface 

tractions described by (4) and (5), the strength of the matrix can be in- 

creased a t  most  by about 2770 due to fiber-reinforcement. 

Another kinematically admissible velocity field can be constructed 

to obtain an  upper bound 7 

f ibers  i n  a specimen is known. 

if the detailed geometry of a r r a y  of 

Construct a surface whose generator is 

\ (,,.)IT 
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paral le l  to x - axis in  such a way that the surface does not cut through 

any fibers. 

1 

This can always be done due to the geometry of the com- 

posite specimen under consideration. A typical "cut" is shown in Figure 

4. The kinematically admissible velocity field is  defined by a constant 

velocity y in  the positive x -direction of the portion of the specimen to 

the right of the f'cut" relative to the res t  of the specimen. 

1 

An application of the upper bound theorem gives 

3 where 4 

is the total  length of the curve which is the t race  of the "cut" in  the 

is the l inear dimension of the specimen in  x -direction and A! 3 3 

x x plane. 2 3  

Therefore, it is possible to construct an infinite number of 

. 
different cuts to  obtain different kinematically admissible velocity fields. 

The lowest upper bound 7 can be obtained f rom (12) by choosing (1;) u 
the cut with the smallest  

bf f ibers  is known. 

e This scheme is possible if the arrangement 3 

For  example, in the case of a "square array" of 

- 

f ibers  in  a specimen shown in Figure 5 ,  it is always possible to choose a 

cut such that ,L = 4, without cutting through any f ibers  regardless of 
3 3 

' fiber volume fractions of the specimen.- Then (."), coincides with 

which is k. Therefore, in  the case of "square array", under the ( T 1 k ) L  

type of surface tractions considered, the presence of fiber-reinforcement 

does not help strengthening the matrix. 



-12 - 

A more  general situation exists in  which the detailed geometry 

of the arrangement of f ibers  is not known but it is possible to obtain an 

L upper bound for 7 by an application of (12). However, due to the fact 
12 

that the detailed geometry is unknown, the upper bound obtained m a y  not 

be the lowest for  any given fiber-volume fraction. The geometry treated 

is that of circular f ibers  of different diameters embedded in an a rb i t ra ry  

manner in a matrix mater ia l  to form a uni-directional fibrous composite 

cylindrical specimen of rectangular cross  section as shown in x x3 plane 

in Fig. 6. Fo r  any x in the specimen, a "cut" can be constructed as 

shown in  Fig. 6. Thus, (in (12) ) associated with the llcut'' i s  a function 

of x More explicitly, 

2 

3 

2' 

f A3 = 4. t (F-1) .t 
3 

where Gf is the total length of the straight line segments within the fibers 

that a "cut" at x bypasses (as represented by dotted line segments i n  2 

f 
Fig. 6). 

in order  to avoid cutting the fibers. Obviously both 6 and F a r e  functions 

F& is the total minimum a rc  length of the "cut" to replace$ f 

f 

of x2, and 

Therefore, we seek the minimum value of.. 6 defined by ( ) Then 

the associated P , can be bounded from above in the following 

f ' f min' 
0 

denoted S 
3' 3 

manne r : 



i 
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Fur ther ,  since v is the mean volume fraction, f 

Combining the last two inequalities, we have 

L 
1 2  ' Then by (12), we obtain an  upper bound for 

The upper bound obtained above is a linear function of the fiber- 

volume fraction v (0 I v  < 1) for  a rb i t ra ry  arrangement of f ibers  in the f . f  

matrix. 

Case 2. Under the conditions of plane strain,  the surface tractions in (4) 

a r e  such that 7..  has  the following form: 
1J 

0 
(13) 

where-7 is a constant, 
23 

This  amounts to uniform shear s t r e s ses  7 applied on the la te ra l  23 

boundary of the specimen as depicted diagramatically in Fig. 7. 
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F o r  lower bound construction, a uniform s t r e s s  field 

is chosen as a statically admissible s t r e s s  field where 7 is such that 

(3') is nowhere violated in the matrix,  

0 

Then it follows that the lower bound 

for  the limit load 

(TL)L = k  

which is again independent of fiber volume fraction as shown in Figure 8. 

It .can be shown f r o m  the definition of a statically admissible s t r e s s  

L 
23 field that k is the highest possible lower bound for  T 

Indeed, consider a most  general  statically admissible s t r e s s  field T . .  in  
1J 

that can be obtained. 

.l. -I- 

equilibrium with the boundary traction. As 5 increases  monotonically, 

* I 
7 . .  will a lso increase monotonically. The highest lower bound 
1J 
r L 

T is the value of T at which at some point of the mat r ix  region in the 23 23 

specimen, the von Mises '  yield criterion (3)  is about to be violated. If the 

point is on the boundary of the specimen, then f r o m  (3) it is clear  that 
- 

k, If it is in the specimen, then < k. Therefore,  in 

the case where no f ibe r s  a r e  cut by the la teral  boundary surface of the 

specimen, which is c nsistent with the composite-cylinder-assemblage 

model stated in Section 2, cannot be higher than k. In cases  where 
! 



l a t e ra l  boundary surface consists of both f ibers  and matrix,  a higher 

might be obtained by considering the surface tractions being (&)L 

applied non-uniformly on the boundary. However, quantitative resul ts  

have not yet been obtained. 

F o r  upper bound construction, the same principle as used in Case 

1 is used here .  A kinematically admissible velocity field is chosen 

as follows: 

(a) In the region of the composite specimen not occupied by composite 

cylinders and on the boundary of the composite cylinders, 
V V 

2 X 
- ‘2 

1 2 2 x 3 ’ u 3  2 
- -  ‘2 

u = o , u  = - 

where Y is any r e a l  number. 2 

(b) In any composite cylinder, the velocity field 3 (x2,x3 ) is the 

e las t ic  displacement solution to the displacement boundary value 

problem with displacement bouadary conditions (15) przscr ibed as 
I 

formulated in  Appendix 1 of [ 5 ] with an additional condition that the 

fibrous core is rigid and the binder shell is incompressible. 

F o r  the case where @ is the same for  all composite cylinders, an  - -  

~ application of the upper bound theorem gives a n  upper bound 

function of Band v 

( T A L  - = 1 t v 1 2  (I - 1) 
k 
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where 

and 

and 

(17) 
2 

@ (  B, R) t ' f( @ ,  R) cos 8 dddR 2 3  
n(1-8 ) B o  

I z =  

4 2  
2 Y(B,R) = - ( B  t B  

In the case of "random array", (16) reduces to 

tion of v which s h  f 
In Fig. 8,(rL) 2 3  U in (19) i . .  - 

k 

k v '0 f 

plott d as a fun ws th 

(19) 

t 

F r o m  the above result, it is  seen that the upper and lower bounds for  

L L the limit load T a r e  much farther apar t  than those for  T in Case 1. . 
2 3  12 

Therefore, it is possible that the transverse shear strength of the specimen 

could be increased substantially by fiber-reinforcement. 

I .  

Further  effort 

should be made to get closer bounds in order  to have a better estimate of the 

l imit  load. 
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Case 3. 

(4) are such that 7.. has the following form: 

Under the conditions of plane strain, the surface tractions in 

1J 

where 7 and 7 are constants. This amounts to unif0r.m tensile s t r e s s  

7 

u. 22 

applied on the lateral  boundary of the specimen a s  depicted diagrama- 22 

tically i n  Fig. 9 in the x x plane. The tractions equivalent to uniform 2 3  

tensile stress on the terminal sections are used to maintain the conditions 

of plane strain. 

Using the same principle, the lower bound for  the limit load is 

= 2 k  

F o r  upper bound construction, a kinematically admissible velocity 

field is chosen which is obtained from the one constructed in Case 2 through 

an  orthogonal transformation such that 

with 
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I 
where u. a r e  velocity components used 

J 
I 

in Case 2 re fer red  to  a n  

x--system. Then, after some manipulation, it turns out that 

'where ( T2 $u is given in Case 2. 

The selection of the velocity field is not unique and it remains to 

be determined if a lower upper bound can be found by choosing another 

admissible field. Although this uncertainty cannot be removed until 

the bounds are shown to be the best  possible bounds for the geometry 

considered, it is of interest  to  note a n  additional result. Hashin [ 6 ] 

has suggested a velocity field within the composite cylinders of the form: 

r f " r s r  b 

F o r  f (r) assumed as a cubic in  r, numerical resul ts  show that this 

field yields a higher upper bound than that defined by Eqs. (19) and (21). 
- 
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Case 4. Under the conditions of plane strain, the surface tractions 

in (4) a r e  such that 7.. has  the following form: 
1J 

where the non-vanishing components of s t r e s ses  are all constants. This 

amounts to uniform biaxial uniform tensile s t r e s ses  T 

the la teral  boundary of the specimen, under the conditions of plane 

and 7 applied on 
22 33 

strain; as depicted diagramatically in Fig. 10. 

F o r  definiteness, assume 7 . Then following the ideas used 22 ’ T33 

in Case 3, it can be shown that 

(TZ?), - ( 5 k ) L  = 2k 
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and 
( T L )  22 u - (.") 3 3  u = 2(7&) U 

where (T&) can be obtained f rom Case 2. 

Case 5. 

form: 

The surface tractions in (4) are such that 7.. has the following 
1J 

where the constant s t r e s s  components 7 

following way: 

and 7 a r e  related in  the 12 22 

7 = u 7  22 (24) 12 

with a 20. 

shear s t r e s s  7 and uniform tensile s t resses  7 

This amounts to a proportional loading of combined uniform 

on the boundary surface of 
12 1 2.2 

I 
the specimen as depicted diagramatically in Figure 11 in the x x 

1 2  

Since both 7 and 7 are assumed finite, it is obvious that 

plane. 

12 22  

(Y=  0 corresponds to the case where only uniform tensile s t r e s ses  T are 22 

present. On the other hand, Q-+mcorresponds to  the case where the 

specimen is subject only to uniform shear s t r e s ses  7 
12 

L L 
22 . 12 

Lower bounds for 7 and 7 can be obtained easily: 



. -  

and 

for a 2 0  

F o r  upper bound construction, a kinematically admissible velocity 

field y 

admissible fields used in  Case 1 and Case 3 with 

is chosen to be a linear combination of the two kinematically 

Y1 = w Y2 

Equation (26) re la tes  Y and Y2 which appears in (7) and (15), 1 

respectively. 

Then a n  application of the upper bound theorem gives, for the case 
\. 

of constant P throughout the specimen. 

2 2 2  
2 

3 2 p 2  9' ( W ,  P,R)-= 4 1)- - (fi t1) - ] t [ 3 P R - (4S4t B2+ l)] 
R2 2 

1 2 

t CLI 2 (1-P 2 4 .  ) (1 t- P4 ) 

R4 
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and 

4 2 -  3 2  
2 

( 6  t/3 t l ) - -  (B  t l ) ?  2 3 C j R  - @3(b,  R) = 8 
R R 

In the case of "random array",  (27) reduces to  

1 - t a 0  2 
k 

(72;)U = I3 
1 - t a 0  2 

k 

Since w in (26) is a rb i t ra ry ,  the lowest upper bound among the 
- 

c lass  of upper bounds in (28), will be obtained by minimizing the right 

hand side of (28) with respect to W .  Thus, 

and 
k CY I3 

2 

= min. 

L 
will be chosen as the upper bounds for TL and T 12 , respectively. 22 

Numerical calculation is performed to obtain (5ZL)u a n d ( & J  

f r o m  (29) for different values of Pand (Y e 

in the numerical calculation, fo r  any  given P, c3 which minimizes the 

It is interesting to note that 

right hand side of equation (29) is a monotonic increasing function of Q! 

but Wf u(except when a= 0, then W = cL= 0). The resul ts  a r e  

summarized in Figure 12 in which 6 = 0.8 is the highest f iber volume 

fraction shown. 

bound for T~ a n d 7  12 for  any P. 

2 

The dotted curve represents  (25) which gives the lower 

L 
22 



CONCLUSIONS 

Bounds on the limit loads of uniaxial fibrous composites subjected 

to in-plane shear and transverse plane shear and extension s t r e s ses  have 

been obtained. These results emphasize the strong influence of matrix 

properties upon composite strength. Interaction curves for the case of 

combined in-plane shear and transverse extension s t r e s ses  were also 

obtained. 

the strength of many composite laminates. 

This is a state of s t r e s s  which has an important influence upon 

Further  effort is indicated t o  obtain closer bounds on the limit 

load for  certain cases. 

of composites utilizing matrix materials of higher strength. 

Further effort is also indicated for the development 
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FIG. 1. COMPOSITE SPECIMEN 
( FIBERS IN XI DIRECTION) 
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FIG. 2 - IN-PLANE SHEAR 
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FIG. 4. - FIBERS IN XI  DIRECTION. 

3 

x 2  



, 

FIG. 5. - "SQUARE ARRAY" 
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FIG. 6 - A TYPICAL CUT AT X 
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FIG. 7. - TRANSVERSE SHEAR 
(FIBERS PERPENDICULAR TO X2 Xg PLANE) 
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FIG. 8 - U P P E R  AND LOWER BOUNDS FOR T Z 3  L . 



FIG. 9 - TRANSVERSE TENSION 
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FIG. 11 - COMBINED STRESSES 
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